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Notice 
This document is intended to serve the public interest by providing recommendations and procedures that 
promote uniformity of product, interchangeability and ultimately the long-term reliability of audio/video 
service transmission. This document shall not in any way preclude any member or non-member of the Ultra 
HD Forum from manufacturing or selling products not conforming to such document, nor shall the existence 
of such document preclude their voluntary use by those other than Ultra HD Forum members, whether used 
domestically or internationally. 

The Ultra HD Forum assumes no obligations or liability whatsoever to any party who may adopt the API. 
Such adopting party assumes all risks associated with adoption of this API and accepts full responsibility for 
any damage and/or claims arising from the adoption of such API. 

Attention is called to the possibility that implementation of the recommendations and procedures described 
in this document may require the use of subject matter covered by patent rights. By publication of this 
document, no position is taken with respect to the existence or validity of any patent rights in connection 
therewith. Ultra HD Forum shall not be responsible for identifying patents for which a license may be required 
or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention. 

Patent holders who believe that they hold patents which are essential to the implementation of the 
recommendations and procedures described in this document have been requested to provide information 
about those patents and any related licensing terms and conditions. 
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1 PURPOSE AND SCOPE 
Background knowledge about commercially deployed forensic watermarking systems has been presented in 
[1]. With a focus on integration, it helps stakeholders understanding what needs to be done. 

In this document, for the specific use case of Adaptive Bitrate content, APIs are proposed. This allows an 
encoder and a watermarking system to process video content and output Variants. There are two flavours of 
the API, one for watermarking technologies that process baseband video content and one for watermarking 
technologies that process compressed video content. 
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2 DEFINITIONS, ACRONYMS AND REFERENCES 
In addition to definitions, acronyms and references defined in [1], the following is added. 

2.1 Acronyms 

API Application Programming Interface 

EBP Encoder Boundary Point 

ENC Encoder 

HDR High Dynamic Range 

IDR Instantaneous Decoder Refresh point 

NALU Network Access Layer Unit 

RAP Random Access Point 

SEI Supplemental Enhancement Information 

VCL Video Coding Layer 

WMP Watermark Pre-processor 

The types ((u)intN_t) used in this document are defined in [2]. See also <inttypes.h> header, 
https://en.wikipedia.org/wiki/C_data_types#inttypes.h, and <stdint.h>. 

2.2 References 

[1] Ultra HD Forum Guidelines, Revision 2.4, 2020. https://ultrahdforum.org/guidelines/ 

[2] Information technology – Programming languages – C99, ISO/IEC 9899:1999. 

[3] ITU-T Recommendation H.264 (01/2012): “Advanced video coding for generic audiovisual services” 
| ISO/IEC 14496-10:2010: “Information technology – Coding of audio-visual objects – Part 10: 
Advanced Video Coding”. 

[4] ITU-T Recommendation H.265 (04/2015): “Advanced video coding for generic audiovisual services” 
| ISO/IEC 23008-2:2015: “High Efficiency Coding and Media Delivery in Heterogeneous 
Environments – Part 2: High Efficiency Video Coding”. 

[5] ISO/IEC 13818-1:2019, Information technology — Generic coding of moving pictures and associated 
audio information — Part 1: Systems. 

[6] OpenCable™ Specifications, Encoder Boundary Point Specification, 2013. OC-SP-EBP-I01-130118. 

[7] AV1 Bitstream & Decoding Process Specification, Last modified: 2019-01-08 11:48 PT, Authors: 
Peter de Rivaz, Argon Design Ltd. Jack Haughton, Argon Design Ltd, Codec Working Group Chair: 
Adrian Grange, Google LLC, Document Design: Lou Quillio, Google LLC. 
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3 INTRODUCTION 
For watermarking with Variants creation, video content is pre-processed and integration with the encoder is 
required, especially in the context of Live where latency is critical. The video encoder (ENC) will provide 
information about the stream, content and location and the Watermark pre-processor (WMP) will create 
Variants based on its own technology. 

This document provides a generic C-language API for the WMP both for baseband and compressed 
watermarking technologies. Depending on implementation specifics, only a subgroup of these parameters 
may be required, and some functionality or parameters may be out of scope. This API is not limited to A/B 
use case only (generation of two Variants), it allows generating any number of Variants from the input frame. 

This document extends the guidelines provided in [1]. For example, in the case of ABR content creation as 
shown in Figure 1 (DASH or HLS with two Variants), the API defined in this document is on the link between 
the ENC and WMP. 

 

Figure 1: Scope of the API defined in this document. 

3.1 WMP System Interfaces 

From a system perspective, the WMP is a software component that accepts as input a video content and 
outputs one or several Variants, typically two in the case of A/B watermarking as shown in Figure 2. 

 

Figure 2: WMP interfaces. 

This WMP needs to be integrated within the video processing pipeline of the ENC. Depending on the 
watermarking technology, it will be placed either before the encoding module of the ENC if the WMP 
processes baseband video content, or after the encoding module if it processes compressed video content. 
Although this document provides a generic API for both types of watermarking systems, the actual integration 
in the ENC will be de facto different. In both cases, the ENC is responsible for packaging the produced 
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Variants using relevant transport protocols. It is possible to configure the WMP to produce all the Variants 
of the watermarking system at once or, alternately, to produce only one of these Variants. In the latter case, 
several ENC will need to be deployed, each one producing a single Variant, in order to have all necessary 
Variants in the watermarking system. 

In addition to the Variants, the WMP may also generate metadata and, more specifically, in-band and/or out-
of-band metadata. 

The ENC is responsible for encapsulating the in-band metadata in the video stream it outputs (see. Annex B). 
Depending on which component of the video delivery network shall consume WMP in-band metadata, it may 
be required to be encrypted or not. For instance, WMP in-band metadata may contain A/B redirection 
information to be used in the Edge servers of a CDN. In this case, the WMP in-band metadata shall be left in 
cleartext at the transport layer in order to be accessible at such locations. Alternately, WMP in-band metadata 
may contain information to perform just-in-time watermarking operations in the end-user device. In that case, 
the metadata shall be secured at the video transport layer in a way similar to the video content it is bound to. 

The WMP may also produce out-of-band metadata that is required to perform watermark detection. This is 
watermarking vendor-specific metadata exchanged between the WMP and the watermark detector and is 
typically stored locally on disk by the WMP. The ENC shall then manage this data in a manner defined by 
the WMP provider. As an example, the WMP provider may request that the file is retrieved and pushed on 
an archive on a Cloud service on a regular basis. Another requirement can be on the file size that may not 
exceed a given value. All these elements are to be defined at integration time and are vendor specific. 

3.2 Frame-based Processing 

The WMP operates frame by frame: for each input video frame, the WMP returns Variants of the frame. 
Depending on whether the watermarking technology operates in the baseband or compressed domain, the 
content of a ‘frame’ will actually be different. In the case of baseband watermarking, a frame is a raw image 
represented by a buffer filled with pixel values and all frames have the same size. For compressed domain 
watermarking system, a frame is a portion of the encoded video stream e.g. an Access Unit (AU) using MPEG 
terminology. As a result, frames may have different sizes. 

Another salient difference between baseband and compressed domain watermarking relates to the delivery 
schedule of the input frames. In baseband watermarking, the WMP is placed before the encoding module of 
the ENC and is therefore expecting input frames to be given in presentation order, typically at a regular pace 
depending on the frame rate of the input video feed. In contrast, with compressed domain watermarking 
systems, the WMP is typically placed after the encoding module of the ENC and expects input frames to be 
given in decoding order. In this setup, input frames may arrive in bursts according to the GOP structure. 

For ABR distribution, the WMP may require knowing how the video bitstream will be eventually segmented 
for OTT delivery. This is the reason why dedicated signalling may be used to indicate if a given frame 
processed by the WMP will be the beginning of a segment at delivery time. 

3.3 Shared Buffers 

The WMP and the ENC have shared buffers for exchanging content (input frames and metadata and marked 
frames and metadata). The management of these buffers is under the ENC responsibility, the WMP is only 
responsible for managing its internal memory. Note that this internal memory could be a copy of these shared 
buffer, but it is not recommended for efficiency purposes. Depending on the operating modes that are 
expressed with several parameters, the ENC needs to release memory following the guidelines presented in 
Section 5. For example, when a shared buffer can be released depends on the use or not of a dedicated callback 
function. 

Additional optimization of the memory management is possible with ad-hoc functions that are not defined in 
this document. 
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4 MAIN DATA STRUCTURES 
This API uses a few data structures to describe (i) the video content that will be processed by a WMP instance, 
(ii) a video frame given in input to the WMP, and (iii) the Variants returned by the WMP. 

4.1 Video Content Description 

The description of the video content is encapsulated in a fixed-size data structure that contains the information 
listed below: 

typedef struct { 
  uint32_t width;    // Width of a video frame in pixels 
  uint32_t height;    // Height of a video frame in pixels 
  int32_t stride;    // Number of pixels between consecutive lines 
      // May be negative (for example for RGB space) 
  wmp_yuv_format_t yuv_format;  // Raster format 
  wmp_format_t format;   // Interlacing mode 
  wmp_hdr_mode_t hdr_mode;   // HDR description 
  uint32_t fps_num;    // Numerator of the fps e.g. 30000 
  uint32_t fps_den;    // Denominator of the fps e.g. .1001 for 29.97 
  wmp_codec_t codec;   // Codec used to encode the video content 
  uint32_t seg_min;    // Min segment duration in frames 
  uint32_t seg_max;    // Max segment duration in frames 
  wmp_mode_t enc_mode;   // Encoding mode 
  int8_t content_identifier[256]; // Identifier of the content, null terminated 
array 
} wmp_content_description_t; 

4.1.1 Raster Format 

An exhaustive list of raster formats is defined in ffmpeg (ffmpeg.exe -pix_fmts). Note that it also includes 
the data size of pixels and bit depth. For example, a YUV 4:2:0 progressive video content with 8-bit depth is 
represented by yuv420p. The API of the WMP supports the following raster formats: 

typedef enum { 
  gray                 =  0, 
  yuv420p              =  1, 
  yuv422p              =  2, 
  yuv444p              =  3, 
  yuv420p10le          =  4, 
  yuv422p10le          =  5, 
  yuv444p10le          =  6, 
  yuv420p12le          =  7, 
  yuv422p12le          =  8, 
  yuv444p12le          =  9, 
  yuv_format_undefined = 10 
} wmp_yuv_format_t; 

4.1.2 Interlacing 

The API of the WMP supports the following modes of interlacing: 

typedef enum { 
  FF_INTERLACED_TOP_FIRST    = 0, // Interlaced format with odd/even indication 
  FF_INTERLACED_BOTTOM_FIRST = 1, // Interlaced format with odd/even indication 
  FF_PROG                    = 2, // Progressive mode 
  FF_3DSBS                   = 3, // 3-D Side-by-Side 
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  FF_3DTB                    = 4  // 3-D Top-Bottom 
} wmp_format_t; 

4.1.3 Dynamic Range 

The API of the WMP supports the following dynamic ranges: 

typedef enum { 
  SDR             = 1, 
  HDR10           = 2, 
  HDR10PLUS       = 3, 
  HLG             = 4, 
  DOLBYVISION     = 5, 
  SL-HDR-1        = 6, 
  range_undefined = 99 
} wmp_hdr_mode_t; 

This API does not make any assumption on clamping. If required, this can be added either when integrating 
the WMP and ENC or when deploying. 

4.1.4 Video Codec 

The API of the WMP supports the following video codecs: 

typedef enum { 
  RAW             = 0, 
  AVC             = 1, 
  HEVC            = 2, 
  AV1             = 3, 
  MPEG4           = 4, 
  VP9             = 5, 
  VP10            = 6, 
  VVC             = 7, 
  EVC             = 8, 
  LCEVC           = 9, 
  codec_undefined = 99 
} wmp_codec_t; 

This parameter is mandatory for watermarking technologies operating in the compressed domain. It is 
optional for watermarking technologies operating in the baseband domain, in which case the value 
codec_undefined shall be used. However, if in-band metadata is produced by the watermarking technology, 
this parameter shall be properly set to format the metadata accordingly (see Annex B). 

4.1.5 ABR Segmentation 

The parameters seg_min and seg_max define the boundaries length of any segment under any segmentation 
process. They enable the WMP to distribute the watermark embedding accordingly to guarantee maximum 
of a single variation per segment. Values should be as accurate as possible and setting seg_min=seg_max 
allows for the most efficient bit distribution. seg_max is an upper bound. 

Note: This may be required for VOD content when every segment is not necessarily carrying watermark 
information and a certain number of bits must be embedded per a given duration (e.g. 10 bits for 5 minutes). 
These parameters are then helpful for proper calculation of the bit distribution. 

4.1.6 Encoding Mode 

As shown in Figure 3, in VOD content preparation workflow, the WMP may be used in two passes as are 
video encoders. The first pass is used to analyse the video content to be processed and the second pass actually 
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generates the Variants. For Live content preparation workflow, because of real-time constraints, there is no 
possibility to have a second pass. 

 

Figure 3: Two pass encoding workflow where mode = ENC_TWO_PASS. 

The API of the WMP supports the following encoding modes: 

typedef enum { 
  ENC_ONE_PASS = 1, // VBR/CBR encoding using one pass 
  ENC_TWO_PASS = 2, // VBR/CBR encoding using two passes 
  ENC_LIVE     = 3  // Live encoding 
} wmp_mode_t; 

It is expected that the WMP instance manages internally the status of encoding a frame when in 
ENC_TWO_PASS mode. It means that the WMP knows whether this is the first or second pass when receiving 
a frame to process. 

4.2 Video Frame Description 

In essence, the WMP operates frame by frame. Each video frame that is fed to the WMP is described using a 
data structure that contains the information listed below: 

typedef struct { 
  wmp_frame_type_t  frame_type;  // Type of frame 
  uint32_t   frame_number; // Frame sequence number in presentation order 
  uint64_t   PTS;   // Presentation Time Stamp (see [5]) 
  uint64_t   DTS;   // Decoding Time Stamp (see [5]) 
  uint32_t   encoder_id;  // ENC identifier 
  uint32_t   seq_number;  // Sequence number 
  uint8_t   frag_start;  // New EBP fragment indicator: 0 or 1 
  uint8_t   seg_start;  // New EBP segment indicator: 0 or 1 
  unit32_t   frame_buffer_len; // Length of the frame buffer 
  uint8_t  *frame_buffer; // Frame in specified raster or codec format 
  uint8_t  *enc_data;  // Blob containing ENC vendor-specific data 
} wmp_frame_description_t; 
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4.2.1 Type of Frame 

The WMP may adjust its watermarking strategy depending on the type of the video frame. The API of the 
WMP supports the MPEG types of frames listed below. If the ENC cannot provide this information, this field 
shall be set to the value NN. If an I-frame is also an IDR frame, then it shall be declared as an IDR frame. 

typedef enum { 
  NN  = 0, 
  IDR = 1, 
  I   = 2, 
  P   = 3, 
  B   = 4, 
  b   = 5 // (non referenced B-frame) 
} wmp_frame_type_t; 

4.2.2 PTS and DTS 

These parameters are not relevant for watermarking technologies operating in the baseband domain. In that 
case, they can be arbitrarily set to zero. 

4.2.3 Encoder Identifier 

A WMP instance may generate all the Variants of the watermarking system or, alternately, it may generate 
only one of them. In the latter case, several ENCs will run in parallel and the field encoder_id will let the 
WMP know which encoder it is interacting with and which Variant shall be generated. Examples are provided 
in Section 6.3.1. 

4.2.4 Sequence number and ABR Segmentation 

In addition to the high level ABR segmentation signalling defined in Section 4.1.5, the WMP may require to 
know if a video frame is the beginning of an ABR segment. This information can be inferred if the ENC can 
provide a sequence number (seq_number) for each frame. Alternately, the ENC can rely on Encoder 
Boundary Point (EBP) signalling such as defined in [5]. The binary flags frag_start and seg_start can 
be used to indicate the beginning of short fragments (typically a DASH 2 seconds segment) and long segments 
(typically an HLS 6 seconds segment) respectively1. 

When used, seq_number follows this rule: first = 1 (0 if unavailable). 

4.2.5 Frame Buffer 

If the WMP operates with baseband video, the buffer frame_buffer contains the pixel values of a video 
frame according to the pixel format defined in the content description (see Section 4.1). In contrast, if the 
WMP operates in the compressed domain, the buffer frame_buffer contains a portion of encoded video e.g. 
an MPEG Access Unit. In both cases, the length in bytes of the frame buffer is given by frame_buffer_len. 

4.3 Watermarked Frames Description 

The structure wmp_mark_description_t is composed of: 

typedef struct { 
  uint32_t   nb_variants;    // Number of Variants 
  wmp_frame_description_t variants[max_variants];  // Generated Variants 
  uint8_t   inband_metadata_size;  // Metadata size 
  uint8_t inband_metadata[max_inband_metadata_size]; // SEI to be added 

 
1 The ‘fragment’ and ‘segment’ terminology in the definition of frag_start and seg_start must be understood as 
defined in [6]. They are not CMAF fragments/segments. 
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} wmp_mark_description_t; 

4.3.1 Number of Created Variants 

For a given input video frame, the WMP may provide one or several Variants. If the frame is not watermarked, 
then the nb_variants variable will be set to zero (0); if it is watermarked, then there are several Variants 
(see examples in Section 6.3.1) and the number of Variants is given by the value of nb_variants, i.e. 1, 2… 
depending on the configuration. Note that nb_variants cannot take values higher than max_variants 
defined in WMP_Open. If parallel encoders are used, then each encoder will output one Variant and, in this 
case nb_variants=1 is the maximum value. 

4.3.2 In-band Metadata 

The ENC shall examine these two elements in order to determine whether it shall introduce extra metadata 
in the video bitstream: 

1. inband_metadata_size: The effective size of inband_metadata in bytes. 

2. inband_metadata: It is the concatenation of the UUID and watermarking_metadata of the payload 
for a Non-VCL units as described in Annex B depending on the codec. 

This is optional, if no metadata is provided, the inband_metadata_size shall be explicitly set to zero (0). It 
contains vendor-specific data. 
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5 PROCESSING MODES 
The following principles apply for the management of the shared buffers: 

 The ENC is the owner of the memory buffers, namely frame_description (see section 4.2), 
representing the input frame, and mark_description (see section 4.3), representing the watermarked 
Variant. It means that ENC must pre-allocate these buffers before WMP_ProcessFrame is invoked. 

 WMP sets the value of the nb_variants variable in mark_description to zero or a positive value 
(the maximum been defined by max_variants), in order to communicate “non-watermarked vs. 
number of Variants” frame, respectively – see the explanation of nb_variants in Section 4.3.1. 

There are, theoretically, several processing modes that are possible with the parameters of the API defined in 
Section 6. The processing modes are governed by: 

 The use of a callback function or not: If a callback function is used, the memory can only be released 
when the callback is invoked. 

 The value of nb_variant: There are optimization cases allowing to use the frame_description 
content as replacement for the values for the mark_description and thereby avoid the need to copy 
full frame buffers. 

 The values in delay_description: This allows the WMP to tell the ENC that WMP will add some 
delay, hence impacting when shared memory can be released and how much memory shall be 
budgeted by the ENC. 

Based on the feedback from vendors with existing implementations, the three following cases are detailed as 
they represent models to be supported at the time of writing this document 

 Without a callback function and an added delay of n frames (n could be equal to 0) and with the 
possibility that nb_variant can sometimes be equal to 0. 

 Because of the delay of n frames and the absence of a callback function, the ENC must keep 
the shared buffer of frame_description for n+1 calls of the processing function. It provides 
the WMP with an access to the input content as long as necessary for generating the Variants. 
When nb_variant is equal to 0, the ENC needs to get from the input frame_description 
the (non-modified) Variants that will be used in the next steps of the processing chain. Shared 
memory mark_description can always be released after exiting from the processing 
function and once the ENC has made use of it. 

 Without a callback function and an added delay of n frames (n could be equal to 0) and nb_variant 
cannot be equal to 0 

 This case is very similar to the previous one, the ENC must keep the shared buffer 
frame_description for n+1 calls of the processing function. However, since nb_variant 
is always different from 0, Variants are always provided back in the mark_description that 
is part of the shared memory. As in the previous case, mark_description can always be 
released after exiting from the processing function and once the ENC has made use of it. 

 With a callback function and an added delay of maximum t milliseconds and nb_variant cannot be 
equal to 0 

 The management of the memory is driven by the invocation of the dedicated callback 
function. When the ENC receives a corresponding callback call, any shared buffer 
frame_description and mark_description that is an argument of the callback function 
can be released as soon as the ENC made its own processing with the mark_description 
content. The ENC always get Variants in mark_description as nb_variant cannot be 
equal to 0. 
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6 APPLICATION PROGRAMMING INTERFACE 
The WMP functionality is organized in five stateful API calls: 

1. WMP_Open, which creates a WMP instance to be shared among all subsequent calls – see Section 6.1 

2. WMP_InitContent, which initializes the earlier created instance with the content description (i.e. 
what content the instance is supposed to process) – see Section 6.2 

3. WMP_ProcessFrame, which is called for each frame of the content to be processed by the WMP 
instance – see Section 6.3 

4. WMP_ClearContent, which clears the content description of the WMP instance – see Section 6.4 

5. WMP_Close, which destroys the WMP instance – see Section 6.5 

All functions of the API return with one of the status codes defined in Section 6.6. 

This document describes version 1.0 of the API. 

6.1 WMP Instance Creation 

This function is invoked to initialize the WMP. It takes in input several configurations parameters as well as 
pointers to callback functions that may be invoked by the WMP. If successful, this function returns a pointer 
to a data structure containing relevant information to operate the created WMP instance. 

wmp_status_t WMP_Open(uint32_t   init_data_size, 
 const void  *init_data, 
 uint32_t   wm_id_length, 
 uint32_t   max_variants, 
 uint32_t   use_EBP_signal, 
 void  *log_message_callback, 
 void  *mark_ready_callback, 
 void **instance) 

Input parameter Description 
init_data_size Size in bytes of the blob of data init_data. 
init_data Blob of data containing configuration parameters for the WMP. The exact 

structure of this blob of data depends of the watermarking vendor and could 
include, for example, the path for the file to be created by the WMP output 
(see Annex B). The ENC is responsible for allocating and filling this data 
structure with relevant information. This structure is unaltered by the 
function. The ENC obtains the data for filling this blob in a WMP vendor-
specific manner. 

wm_id_length Number of symbols composing the watermarking identifier to be embedded 
at a later stage. This may be present in init_data, in this case, this must be 
the same value. 

max_variants Maximum number of Variants that this WMP instance shall create. This may 
be present in init_data, in this case, this must be the same value. 

use_EBP_signal Set to 1 if the EBP signalling in frame_description is used. Set to 0 
otherwise. This may be present in init_data, in this case, this must be the 
same value. 

log_message_callback Callback function used by the WMP to escalate logs to the ENC. 
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mark_ready_callback Optional callback function required for the WMP to operate in case Variants 
are not provided when WMP_ProcessFrame() returns. It shall be set to NULL if 
it is not used. 

instance The created WMP instance will be returned via this parameter. It will be set 
to NULL in case of error. 

6.1.1 Log Callback Function 

This callback function is invoked by the WMP to provide log information (error, warning, info, debug) to the 
ENC. The ENC shall incorporates these log messages as part of its general logs. This callback function shall 
return one of the status code defined in Section 6.6 to indicate whether or not the log message has been 
successfully processed by the ENC or not. 

typedef wmp_status_t (*log_message_callback)(wmp_logs_level_t  log_level, 
 char   *log_message) 

The log_level values are in descending order, meaning that the lower the value is, the higher the importance 
of the log information is. The different log level values are: 

typedef enum { 
  ERROR = 0, 
  WARNING, 
  INFO, 
  DEBUG, 
  MAX_LOGS 
} wmp_logs_level_t; 

6.1.2 Mark Ready Callback Function 

This callback function is invoked when the Variants generated by the WMP are not provided when 
WMP_ProcessFrame() returns. In that case, the WMP invokes this callback to notify the ENC that a frame 
has been fully processed. The ENC shall then push the generated Variants further downstream. Moreover, 
invoking this callback indicates that the WMP will no longer reference the original input frame as well as the 
watermarked frames and that the ENC can reuse the underlying shared memory buffers. This callback 
function shall return one of the status code defined in Section 6.6 to indicate whether or not the ENC has 
successfully processed the provided frames and Variants. 

Typedef 

wmp_status_t (*mark_ready_callback)(wmp_frame_description_t *frame_description, 
 wmp_mark_description_t *mark_description) 

6.2 Content Initialization 

This function takes in input the description of the video content to be processed and attaches it to a created 
WMP instance. The WMP returns information about its processing delay and the amount of in-band metadata 
that may need to be incorporated to the output video content. 

wmp_status_t WMP_InitContent(const wmp_content_description_t *content_description, 
 wmp_delay_description_t   *delay_description, 
 uint16_t   *max_inband_metadata_size, 
 void    *instance) 

Input parameter Description 
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content_description Pointer to a data structure containing the description of the video content 
to be processed by the WMP instance (see Section 4.1). The ENC is 
responsible for allocating and filling this structure. It is unaltered by the 
function. 

delay_description Pointer to a data structure containing information about the processing 
delay introduced by the WMP (see below). The ENC is responsible for 
allocating this structure and the WMP fills it with relevant information. 

max_inband_metadata_size This is the maximum size in bytes of inband_metadata part of the 
mark_description structure. This value is returned by the WMP so that 
the ENC can properly pre-allocate the memory buffers of Variants. 

instance Pointer to a created WMP instance that shall process the frames of 
content_description. 

6.2.1 Processing delay 

When the WMP processes video content, it may introduce some delay in the video processing pipeline. Such 
delay may be dependent on some characteristics of the video content, e.g. the resolution, the video codec, the 
video bitrate, etc. To notify the ENC of this processing delay, the WMP fills a data structure previously 
allocated by the ENC. 

typedef enum { 
  NO_DELAY = 0, // No delay is added (delay value shall be set to 0) 
  TIME     = 1, // Time delay expressed in milliseconds 
  FRAME    = 2  // Frame delay expressed in number of frames 
} wmp_delay_type_t; 
 

typedef struct { 
  delay_type_t delay_type;  // Type of delay 
  uint32_t     value;  // Effective delay introduced by the WMP (in ms or frames) 
} wmp_delay_description_t; 

The data structure wmp_delay_description_t first indicates if the introduced delay will be expressed in 
milliseconds (time delay) or in number of frames (frame delay). Usually, when the WMP provides the 
Variants when WMP_ProcessFrame() returns, the delay is a number of frames whereas it is rather expressed 
in milliseconds if a callback function is used. Such information is expected to help the ENC to properly 
provision buffers that will be shared with the WMP. 

If the WMP does not introduce any delay, the type of delay shall be set to NO_DELAY and the value set to 0. 

6.3 Frame Processing 

This method is called repeatedly to process successive frames of the video content and produce Variants. For 
baseband watermarking technologies, frames should be passed in presentation order. Conversely, for 
compressed domain watermarking technologies, frames shall be passed in decoding order. 

wmp_status_t WMP_ProcessFrame(const wmp_frame_description_t *frame_description, 
 wmp_mark_description_t  *mark_description, 
 void   *instance) 

Input parameter Description 
frame_description Data structure containing the description of the frame to be processed by the 

WMP (see Section 4.2). The ENC is responsible for allocating and filling this 
structure with relevant information. It is unaltered by the function. The ENC is 
also responsible for deallocating this data structure after its use. 



17 

mark_description Data structure containing the description of the watermarked frames generated 
by the WMP (see Section 4.3). The ENC is responsible for allocating this 
structure. WMP fills it with relevant information. It is provided for every 
frame. 

instance Instance of the WMP to be used for processing the input frame. 

6.3.1 Examples of WMP Parameters Settings 

The following are examples of setting some parameters in the frame_description and mark_description 
structures. 

Example 1: An ENC receives one frame and outputs two Variants created by the WMP. Optionally, the WMP 
may decide to output no Variant or only one Variant if there is no difference between A/B (for example if 
adding only a time stamp). 

Variant A

Variant BStream

or

Encoder

Transcoder

WMP

Variant A

Variant BStream Encoder

Transcoder

WMP

 

 max_variants = 2 
 // General parameter of the instance. 

 nb_variants = 0, 1 or 2 
 // If equal to 0, the WMP does not watermark the 
frame. If equal to 1, the WMP produced a single 
Variant and the ENC can overlook the content of 
variants[1]. 

 encoder_id = 1 

 

Example 2: An encoder receives one frame and outputs three Variants created by the WMP. Optionally, the 
WMP may decide to output no Variant or only one Variant if there is no difference between A/B/C. 

Variant B

Variant CStream

or

Encoder

Transcoder

WMP

Variant B

Variant CStream Encoder

Transcoder

WMP

Variant A

Variant A

 

 max_variants = 3 

 // General parameter of the instance. 

 nb_variants = 0, 1 or 3 

 // If equal to 0, WMP does not watermark the 
frame. If equal to 1, the WMP produced a single 
Variant and the ENC shall overlook the content of 
variants[1] and variants[2]. 

 encoder_id = 1 

 

Example 3: Two ENCs are used in parallel, both receive the same frame and each encoder outputs one 
Variant. 
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Transcoder

Variant A

Stream

Encoder

WMP

Transcoder

Variant BEncoder

WMP

 

For each transcoder: 

 max_variants = 1 
 // General parameter of the instance. 

 nb_variants = 0 or 1 
 // If equal to 0, the WMP does not watermark the 
frame. Each transcoder outputs only one Variant. 

 encoder_id = 1 or 2 
 // Each encoder has a different ID. 

 

Example 4: Three ENCs are used in parallel; each one receives the same frame and outputs one Variant. 

Transcoder

Variant A

Stream

Encoder

WMP

Transcoder

Variant BEncoder

WMP

Transcoder

Variant CEncoder

WMP

 

For each transcoder: 

 max_variants = 1 
 // General parameter of the instance. 

 nb_variants = 0 or 1 
 // If equal to 0, the WMP does not watermark 
the frame. Each transcoder output only one Variant. 

 encoder_id = 1 or 2 or 3 
 // Each encoder has a different ID. 

6.4 Content Purge 

The ENC invokes this function to purge a WMP instance prior to its termination or its reconfiguration to 
process another video content having possibly different characteristics. Once this function has returned, the 
WMP will never invoke the mark_ready_callback function if a callback function is defined and will never 
reference shared buffers provided previously. Before exiting, several callback could be triggered, if used, in 
order to flush the shared buffer in the pipeline. If no callback function is used, it is the responsibility of the 
ENC to release shared memory, as a consequence, few frames may not be marked at the end of the content. 

wmp_status_t WMP_ClearContent(void *instance) 

Input parameter Description 
instance Instance of the WMP for which the content descriptor is reset. 

6.5 WMP Instance Termination 

The ENC invokes this function to terminate a running WMP instance. 

wmp_status_t WMP_Close(void *instance) 

Input parameter Description 
instance Instance of the WMP to be terminated. 
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6.6 API Return Status Codes 

The following status code are defined as part of this API: 

typedef enum { 
  WMP_SUCCESS = 0, 
  WMP_E_MEM_ALLOC = 1,  // Error during the memory allocation 
  WMP_E_MEM_FREE = 2,  // Error during the memory release 
  WMP_E_INIT_FORMAT = 3,  // Error during the processing of init_data 
  WMP_E_CONTENT_FORMAT = 4, // Error during the processing of content_description 
  WMP_E_WM_ID_LENGTH_RANGE = 5, // wm_id_length is out of supported range 
  WMP_E_MAX_VARIANTS_RANGE = 6, // max_variants value is out of supported range 
  WMP_E_MARK_READY_CALLBACK_MISSING = 7, // Callback pointer is mandatory 
  WMP_E_INIT = 8,    // Error other than those specified above during init 
  WMP_E_FRAME_FORMAT = 8,  // Error occurred during reading frame_description 
  WMP_E_GENERIC = 99  // Generic error code 
} wmp_status_t; 
 

Additional error codes can be defined by any WMP provider. These error codes must be above 99. These 
error codes are then specific to this WMP provider and to its implementation. 
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ANNEX A CALL SEQUENCE DIAGRAM 

A.1 INTRODUCTION 

The following exemplifies two reference WMP flows and associated sequence calls with main parameters. 
Both examples assume that an A/B version of the input video content is expected and that a single WMP 
instance is created for creating these Variants (example 1 in the previous section). The flow presented in 
section A.2 is typically for a WMP working in the baseband space while the flow presented in section A.3 is 
for a WMP working in the compressed domain. 

A.2 WITHOUT A CALLBACK FUNCTION 

Figure 4 is a typical flow when no callback function is defined. The watermarked frames are provided back 
when the function WMP_ProcessFrame() returns. In Figure 4, the function WMP_ProcessFrame() is blocking 
and ENC waits for WMP to end its processing before the next call of WMP_ProcessFrame(). Note that, in this 
flow, the data in the returned mark_description may correspond to a video frame provided in a previous 
call in frame_description. This delay is expressed using the structure delay_description returned by the 
function WMP_InitContent(). 

For example, with a delay of two frames, mark_desc_3 contains the watermarked frames for the frame 
provided in frame_desc_1. Assuming that the content is SDR 1080p at 24 fps, the relevant parameters in the 
API calls would be: 

WMP_Open() 
 
init_data_size Variable 
init_data Variable 
wm_id_length Variable 
max_variants 2 – creation of A/B Variants 
use_EBP_signal Variable 
log_message_callback Pointer to a function 
mark_ready_callback NULL – no callback function 
instance Pointer to WMP 

 

WMP_InitContent() 
 
content_description width=1920; 

height=1080; 
stride=1920; 
yuv_format=1; 
format=2, 
hdr_mode=1; 
fps_num=24; 
fps_den=1; 
codec=99;  // Irrelevant parameter for baseband 
seg_min=48; 
seg_max=48; 
mode=2; 

delay_description delay_type=2; 
value=2;  // mark_desc_(n+2) contains watermarked frames 
for the frame provided in frame_desc_(n) 

max_inband_metadata_size Variable 
instance Pointer to WMP 
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WMP_ProcessFrame() 
 
frame_description All parameters are different per frame 
mark_description All parameters are different per frame 
instance Pointer to WMP 

 

 

Figure 4: Illustration of the calls sequence diagram when the WMP operates without a callback function. 

 

A.3 WITH A CALLBACK FUNCTION 

Figure 5 depicts a similar flow when a dedicated callback function is used to output watermarked frames. 

In Figure 5, the function WMP_ProcessFrame() returns almost immediately and ENC can rapidly push several 
video frames to WMP if needed. WMP then invokes the callback mark_ready_callback() to notify ENC that it 

ENC 
WMP 

WMP_Open(wmp_instance) 

WMP_InitContent(content_desc, wmp_instance) 

WMP_ProcessFrame(frame_desc_1, mark_desc_1, instance) 

WMP_ClearContent(content_desc, wmp_instance) 

WMP_Close(wmp_instance) 

WMP_ProcessFrame(frame_desc_2, mark_desc_2, instance) 

WMP_ProcessFrame(frame_desc_3, mark_desc_3, instance) 

WMP_ProcessFrame(frame_desc_4, mark_desc_4, instance) 

WMP_ProcessFrame(frame_desc_N, mark_desc_N, instance) 
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produced Variants for an input frame and that it will no longer reference the specified frame_description 
and mark_description. ENC can then reuse the memory allocated to these structures once watermarked 
content is pushed further in the content preparation pipeline. 

In this example, assuming content is SDR 1080p at 24 fps encoded with AVC, the relevant parameters in the 
calls would be 

WMP_Open() 
 
init_data_size Variable 
init_data Variable 
wm_id_length Variable 
max_variants 2 – creation of A/B Variants 
use_EBP_signal Variable 
log_message_callback Pointer to a function 
mark_ready_callback Pointer to a function 
instance Pointer to WMP 

 

WMP_InitContent() 
 
content_description Width=1920; 

Height=1080; 
Stride=1920; 
yuv_format=1; 
format=2, 
hdr_mode=1; 
fps_num=24; 
fps_den=1; 
codec=1; 
seg_min=48; 
seg_max=48; 
mode=2; 

delay_description delay_type=1; 
value=50;  // The callback function provides watermarked 
data with 50 ms delay 

max_inband_metadata_size Variable 
instance Pointer to WMP 

 

WMP_ProcessFrame() 
 
frame_description All parameters are different per frame 
mark_description While been present and memory is allocated, watermarked data 

is not provided in this call 
 

mark_ready_callback() 
 
frame_description All parameters are different per frame 
mark_description All parameters are different per frame 
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Figure 5: Illustration of the calls sequence diagram when the WMP operates with a callback function. 

ENC 
WMP 

WMP_Open(wmp_instance) 

WMP_InitContent(content_desc, wmp_instance) 

WMP_ProcessFrame(frame_desc_1, mark_desc_1, instance) 

WMP_ClearContent(content_desc, wmp_instance) 

WMP_Close(wmp_instance) 

WMP_ProcessFrame(frame_desc_2, mark_desc_2, instance) 

mark_ready_callback(frame_desc_1, mark_desc_1) 

WMP_ProcessFrame(frame_desc_3, mark_desc_3, instance) 

WMP_ProcessFrame(frame_desc_4, mark_desc_4, instance) 

mark_ready_callback(frame_desc_2, mark_desc_2) 

mark_ready_callback(frame_desc_3, mark_desc_3) 

mark_ready_callback(frame_desc_N, mark_desc_N) 
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ANNEX B IN-BAND METADATA 

B.1 INTRODUCTION 

Encoders produce formatted streams in order to be compliant with the ingest format of the next in-line 
components or systems. In case of OTT, these next in-line can be Origins or JiT (Just-in-Time) Packagers. 
Encoders also make some initial formatting decisions (e.g. EBP, RAP, IDR, etc.). To avoid two information 
channels between an upstream component and a downstream component in the Live flows, where one channel 
is the video stream and the other channel is out-of-band metadata with locations, Encoders can introduce in-
band metadata located within the encoded video bitstream. 

When an Encoder calls WMP_ProcessFrame, it submits the frame_description structure with the metadata 
such as: frame_number or seq_number. In order to enable proper switching between Variants in the 
downstream components, an out-of-band embed locations file can be constructed. While this may work for 
VOD deployments, it is risky and introduces significant (repetitive) overhead in terms of out-of-band file 
copies for Live deployments. 

The same effect can be achieved by an in-band artifact collocated with the actual video frames, where the 
switching between Variants can be recovered by quick scan of the final (formatted) stream while avoiding 
out-of-band synchronization challenges. Therefore, instead of having two channels and potential 
misalignments between them in Live deployments, a single channel carries all necessary information and 
metadata “piggy-backs” the existing infrastructure. 

B.2 AVC METADATA INCLUSION 

Metadata is added in the stream as non-VCL NALUs (user data unregistered SEI NAL) as described in 
Section 7.3.1 and Annex D of [3]. These NALUs are interleaved with VCL NALUs, which are carrying video 
frames data. Watermarking metadata can be seamlessly carried with other video bitstream Non-VCL data. 

Table 1 gives the format of the SEI NALU that carries watermarking metadata. 

Table 1: Watermarking metadata SEI NAL for AVC. 

Name Descriptor Value Description 
forbidden_zero_bit f(1) 0  
nal_ref_idc u(2) 0  
nal_unit_type u(5) 6 SEI NAL 
payloadType u(8) 5 user_data_unregistered  
payloadSize u(8x)  SEI payload size 
uuid_iso_iec_11578 u(128)  UUID 
user_data_payload_byte u(n)  Watermarking metadata 

 

uuid_iso_iec_11578: It shall have a value specified as a UUID according to the procedures of ISO/IEC 
11578:1996 Annex A. Its value is vendor dependent e.g. 0x4062b69958c7442081fa091040882077. 

B.3 HEVC METADATA INCLUSION 

Metadata is added in the stream as non-VCL NALUs (user data unregistered SEI NAL) as described in 
Section 7.3.1.1 and Annex D of [4]. As in the case of the AVC codec, these NALUs are interleaved with 
VCL NALUs, which are carrying video frames data. Watermarking metadata can be seamlessly carried with 
other video bitstream Non-VCL data. 

Table 2 gives the format of the SEI NALU that carries watermarking metadata. 

Table 2: Watermarking metadata SEI NAL for HEVC. 

Name Descriptor Value Description 
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forbidden_zero_bit f(1) 0 Always zero 
nal_unit_type u(6) 39 SEI NAL 
layer_id u(6) 0 Layer id 
temporal_id_plus1 u(3) 1 Temporal identifier 
payloadType u(8) 5 SEI payload unregistered data 
payloadSize u(8x) 26 SEI payload size 
uuid_iso_iec_11578 u(128)  UUID 
user_data_payload_byte u(n)  Watermarking metadata 

 

uuid_iso_iec_11578: It shall have a value specified as a UUID according to the procedures of ISO/IEC 
11578:1996 Annex A. Its value is vendor dependent. 

B.4 AV1 METADATA INCLUSION 

The AV1 codec is packetized in so called “Open Bitstream Units” (OBU), which purpose matches the one of 
NAL units in codecs such as AVC and HEVC. Moreover, the purpose of Reserved OBU (obu_type = 0) is 
similar to the purpose of SEI and user data. According to the Alliance for Open Media, AV1 codec and 
Section 5.4 of [7]: “Reserved OBUs do not have a defined syntax. The obu_type reserved values are reserved 
for future use. Decoders should ignore the entire OBU if they do not understand the obu_type. Ignoring the 
OBU can be done based on obu_size.” Consequently, watermarking metadata can be added in the stream as 
the payload of a Reserved OBU. 

Table 3: Watermarking metadata and Reserved OBU for AV1. 

Name Descriptor Value Description 
obu_forbidden_bit f(1) 0 Always zero for all OBUs 
obu_type f(4) 0 Reserved OBU enumeration 
obu_extension_flag f(1) 0 No extensions for this instance 
obu_has_size_field f(1) 1 Read “leb128” encoded size 
obu_reserved_bit1 f(1) 0 Reserved bit set to 0 for all OBUs 
obu_size leb128 e.g. 0x1e Watermark metadata size as leb128 
uuid_iso_iec_11578 u(128)  UUID 
metadata u(n)  Watermarking metadata 

 

AV1 stream must include the obu_size inside the Reserved OBU, and it must be encoded as unsigned integer 
represented by a variable number of little-endian bytes – for the explanation see Section 4.10.5 of [7]. The 
obu_size includes both uuid_iso_iec_11578 and metadata. 

uuid_iso_iec_11578: It shall have a value specified as a UUID according to the procedures of ISO/IEC 
11578:1996 Annex A. Its value is vendor dependent. 


